The Structure and Dynamics of Complex Design Networks

https://necsi.edu/dan-braha-description @BrahaDan

Complex Design Networks

engineering nodes

("people," "tasks," "components," "subroutines", "logic gates")

connected by

information flows

("engineering change orders", "parameters", "specifications", "signals") **Nodes: 889 Links: 8178**

The Laws of Complex Design Networks

- **Sparseness:** Small fraction of the possible number of links
- Small World: High clustering with short average path lengths
- **Heavy-tailed Distributions :** Many small nodes held together by a few hubs
- **Asymmetric Information Flows:** incoming capacities of nodes are much more limited than outgoing capacities
- Structure-based Dynamics: Spread is determined by network structure
- **Robustness and Fragility:** Dynamics is ultra error tolerant, yet highly vulnerable to targeted perturbations
- Sensitivity and Leverage: focusing engineering efforts on central nodes
- **Building Blocks:** key design circuit elements evolved to perform similar tasks
- Nested Modularity: Groups form a hierarchical structure

SparsenessComplex DesignNetworks have only a small fraction ofNetworksthe possible number of linksVertice

19 AL	Network	Туре	# Nodes	# Links
Open-Source Software	Linux-kernel	Directed	5,420	11,460
	MySQL	Directed	1,501	4,245
Forward Logic Chip	s38417 electronic circuit	Directed	23,843	33,661
	s38584 electronic circuit	Directed	20,717	34,204
Product Development	Vehicle	Directed	120	417
	Pharma facility	Directed	582	4,123
	16 story hospital	Directed	889	8,178

The Laws of Complex Design Networks

- **Sparseness:** Small fraction of the possible number of links
- Small World: High clustering with short average path lengths
- **Heavy-tailed Distributions :** Many small nodes held together by a few hubs
- **Asymmetric Information Flows:** incoming capacities of nodes are much more limited than outgoing capacities
- Structure-based Dynamics: Spread is determined by network structure
- **Robustness and Fragility:** Dynamics is ultra error tolerant, yet highly vulnerable to targeted perturbations
- Sensitivity and Leverage: focusing engineering efforts on central nodes
- **Building Blocks:** key design circuit elements evolved to perform similar tasks
- Nested Modularity: Groups form a hierarchical structure

Complex Design Networks

Random?

Low Modularity

distance

Low node-to-node

Small World

Networks are clustered but have a small characteristic path length

Crystal?

High Modularity

High node-to-node distance

Small WorldComplex DesignNetworks are clustered but have a smallNetworkscharacteristic path lengthVetworkNetworkddrandCCrand

Open-Source Software	Linux-kernel	4.66	5.87	0.14	0.001
	MySQL	5.47	4.20	0.21	0.004
	Vehicle	2.88	2.73	0.21	0.05
Product Development	Pharma facility	2.63	2.77	0.45	0.02
	t 16 story hospital	3.12	2.58	0.27	0.02
	Microprocessor	2.09	2.40	0.415	0.1466
	Equipment	3.21	2.60	0.50	0.10

The Laws of Complex Design Networks

- **Sparseness:** Small fraction of the possible number of links
- Small World: High clustering with short average path lengths
- **Heavy-tailed Distributions :** Many small nodes held together by a few hubs
- **Asymmetric Information Flows:** incoming capacities of nodes are much more limited than outgoing capacities
- Structure-based Dynamics: Spread is determined by network structure
- **Robustness and Fragility:** Dynamics is ultra error tolerant, yet highly vulnerable to targeted perturbations
- Sensitivity and Leverage: focusing engineering efforts on central nodes
- **Building Blocks:** key design circuit elements evolved to perform similar tasks
- Nested Modularity: Groups form a hierarchical structure

Heavy-tailed Distributions Right-skewed and fat-tailed in-degree and out-degree distributions

Information Bottlenecks ("Design Hubs") "Receivers," "Generators" & "Brokers"

Asymmetric Information Flows incoming capacities of nodes are much more limited than outgoing capacities

The Laws of Complex Design Networks

- **Sparseness:** Small fraction of the possible number of links
- **Small World:** High clustering with short average path lengths
- **Heavy-tailed Distributions :** Many small nodes held together by a few hubs
- **Asymmetric Information Flows:** incoming capacities of nodes are much more limited than outgoing capacities
- Structure-based Dynamics: Spread is determined by network structure
- **Robustness and Fragility:** Dynamics is ultra error tolerant, yet highly vulnerable to targeted perturbations
- Sensitivity and Leverage: focusing engineering efforts on central nodes
- **Building Blocks:** key design circuit elements evolved to perform similar tasks
- Nested Modularity: Groups form a hierarchical structure

Complex DesignStructure-based DynamicsNetworks

Design Network structure provides direct information about its dynamics (behavior)

Design dynamics is controlled by the extent of coupling and correlations in the network

Error/Change Propagation in Complex Design Networks (Random Network)

Error/Change Propagation on Complex Design Networks (Real Design Networks)

Coupling Coefficient, β

5i

-0.185

δ

0.003

-0.33*

-0.016

0.258

0.172

The Laws of Complex Design Networks

- **Sparseness:** Small fraction of the possible number of links
- Small World: High clustering with short average path lengths
- **Heavy-tailed Distributions :** Many small nodes held together by a few hubs
- **Asymmetric Information Flows:** incoming capacities of nodes are much more limited than outgoing capacities
- Structure-based Dynamics: Spread is determined by network structure
- **Robustness and Fragility:** Dynamics is ultra error tolerant, yet highly vulnerable to targeted perturbations
- Sensitivity and Leverage: focusing engineering efforts on central nodes
- **Building Blocks:** key design circuit elements evolved to perform similar tasks
- Nested Modularity: Groups form a hierarchical structure

Robustness and Fragility

Complex Design Networks

Dynamics is ultra error tolerant, yet highly vulnerable to "perturbations" targeted at central nodes

Sensitivity and Leverage

Preferential design policy of focusing engineering efforts on central nodes

The Laws of Complex Design Networks

- **Sparseness:** Small fraction of the possible number of links
- Small World: High clustering with short average path lengths
- **Heavy-tailed Distributions :** Many small nodes held together by a few hubs
- **Asymmetric Information Flows:** incoming capacities of nodes are much more limited than outgoing capacities
- Structure-based Dynamics: Spread is determined by network structure
- **Robustness and Fragility:** Dynamics is ultra error tolerant, yet highly vulnerable to targeted perturbations
- Sensitivity and Leverage: focusing engineering efforts on central nodes
- **Building Blocks:** key design circuit elements evolved to perform similar tasks
- Nested Modularity: Groups form a hierarchical structure

 \bigcirc

"Real-World" Design Network

"Randomized" Design Network

A Dynamic Network Model of Error/Change Propagation on Complex Design Networks

Synchronization of Design Problem Solving Over Time

Synchronization Probability of 3-node Motifs

https://www.nature.com/articles/s41598-020-75221-3

Subgraph Ranking by Synchronizability Metric and Frequency

https://www.nature.com/articles/s41598-020-75221-3

Spearman's Rank Correlations (3-Node Subgraphs)

rank of synchronizability metric (SM)

https://www.nature.com/articles/s41598-020-75221-3

Spearman's Rank Correlations (4-Node Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

Subgraph Frequency Classified by Synchronizability Class (3-node Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

Subgraph Frequency Classified by Synchronizability Class (4-node Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

Subgraph Significance Profile (Z-Score)

3-node, **3-edge** subgraphs

real freq-rand mean freq

https://www.nature.com/articles/s41598-020-75221-3

0.87

0.91

2 6 10

Mip

0.70

0.58

2 6 10

Bio

0.89

2

6 10

Veh2

Z-Score Classified by Synchronizability Class (4-node, 4-edge Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

Z-Score Classified by Synchronizability Class (4-node, 5-edge Subgraphs)

Z-Score Classified by Synchronizability Class (4-node, 6-edge Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

Subgraph Relative Difference Profile (RD-Score)

RD-Score = $\frac{\text{real freq}-\text{rand mean freq}}{\text{real freq}+\text{rand mean freq}}$

https://www.nature.com/articles/s41598-020-75221-3

RD-Score Classified by Synchronizability Class (4-node, 4-edge Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

RD-Score Classified by Synchronizability Class (4-node, 5-edge Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

RD-Score Classified by Synchronizability Class (4-node, 6-edge Subgraphs)

https://www.nature.com/articles/s41598-020-75221-3

Summary

Large-scale design networks share repeated patterns of interdependent activities (routines) that are universal across many distinct organizations

The abundance of these design routines is highly correlated with their ability to synchronize and coordinate the design activity

What is the Origin of the "Magical" Patterns?

Global and properties of local subgraphs contribute to the abundance of subgraphs

"subgraphs within subgraphs"

Temporal nature of design networks and separation of time scales

Braha D & Bar-Yam Y (2006)

Deeper Connection between engineering design and biology?

Variation

Diverse abundance of subgraphs in design networks. Some provide an advantage.

Selection and Transmission

(mimicry, copying, learning, re-use, best practices)

Selective pressures that favor more synchronizable subgraphs

New Design Networks

Increased abundance of subgraphs that enable better coordination and control

References

Formal Design Theory (Topology, Category Theory, Design Automata & Logic, Computational Complexity, Information Theory, Measurement of Structural and Functional Complexity)

Braha D. (1994). Towards Formal General Design Theory. Technical Report. Tel-Aviv University.

Maimon O & Braha D. (1996). On the complexity of the design synthesis problem. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 26(1), 142-151.

Braha D & Maimon O. (1997). The design process: properties, paradigms, and structure. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 27(2), 146-166.

Braha D & Maimon O. (1998). A mathematical theory of design: foundations, algorithms and applications (Vol. 17). Springer Science & Business Media.

Braha D & Maimon O. (1998). The measurement of a design structural and functional complexity. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 28(4), 527-535.

Maimon O & Braha D. (1999). A Mathematical Theory of Design: Representation of Design Knowledge (Part I). International Journal of General Systems. Vol. 27 (4-5). 275-318.

Braha D & Maimon O. (1999). A Mathematical Theory of Design: Modeling the Design Process (Part II). International Journal of General Systems. Vol. 27 (4-5). 319-347.

Braha D & Reich Y. (2003). Topological structures for modeling engineering design processes. Research in Engineering Design, 14(4), 185-199.

References

Complex Engineered Systems

Braha D, Minai A & Bar-Yam Y. (2006). Complex Engineered Systems: Science Meets Technology. Springer, New York.

Yassine A & Braha D. (2003). Complex concurrent engineering and the design structure matrix method. Concurrent Engineering, 11(3), 165-176.

Yassine A, Joglekar N, Braha D, Eppinger S & Whitney D. (2003). Information hiding in product development: the design churn effect. Research in Engineering Design, 14(3), 145-161.

Complex Design Network Theory

Braha D & Bar-Yam Y. (2004). Topology of large-scale engineering problem-solving networks. Physical Review E, 69(1), 016113.

Braha D & Bar-Yam Y. (2004). Information flow structure in large-scale product development organizational networks. Journal of Information Technology, 19(4), 244-253.

Braha, D & Bar-Yam Y. (2007). The statistical mechanics of complex product development: Empirical and analytical results. Management Science, 53(7), 1127-1145.

Braha, D., Brown, D. C., Chakrabarti, A., et al (2013, August). DTM at 25: essays on themes and future directions. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 55928, p. V005T06A018). American Society of Mechanical Engineers.

Braha D. (2016). The complexity of design networks: Structure and dynamics. In Experimental design research (pp. 129-151). Springer, Cham.

Braha D. (2020). Patterns of ties in problem-solving networks and their dynamic properties. https://www.nature.com/articles/s41598-020-75221-3

Coupled Design Process' Theory (RED 2003)

Temporal Complex Networks

Braha D & Bar-Yam **Y** (2006).